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Preface

This book is intended as a concise reference for the central concepts and results of probability and
stochastic processes. It is not designed for instruction or self-contained learning, but as a structured
handbook for readers who already possess familiarity with the material and require a clear, reliable way
to refresh definitions, recall key formulas, and connect ideas in applied settings. The emphasis throughout
is on essential structure and final expressions rather than derivations or examples, with brief conceptual
notes included only where they support interpretation or use.

The material is organized linearly, beginning with probability theory and progressing into stochastic
processes, reflecting the natural conceptual dependency between the two. Topics are presented with an
emphasis on canonical formulas, limiting results, and modeling primitives that frequently arise in quanti-
tative finance, financial engineering, machine learning, and related applied fields. Visualizations are used
in place of worked examples to reinforce intuition and highlight behavior that is most relevant in practice.

The content is compiled and synthesized from coursework and publicly available sources. While the
underlying theory is standard, this work represents a deliberate effort to curate, structure, and distill
the material into a reference format optimized for rapid lookup and practical application. All figures and
visualizations were generated programmatically. This document is an evolving work and reflects an ongoing
process of refinement; as such, errors or omissions may remain.
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Part I Probability

Probability is the language used whenever outcomes are uncertain but decisions still must be made. It
appears wherever data are noisy, systems are complex, and perfect information is unavailable, which is
to say, almost everywhere. From finance and engineering to machine learning, physics, and economics,
probability provides the structure that allows uncertainty to be modeled, quantified, and acted upon.

What makes probability compelling is not that it predicts individual outcomes, but that it reveals order
beneath randomness. Seemingly erratic behavior gives rise to stable patterns when viewed at the right
scale. Aggregates behave differently from individuals, averages become reliable, and variability itself follows
precise laws. These regularities make it possible to reason about risk, infer hidden structure from data,
and design systems that perform reliably in uncertain environments.

This section develops the mathematical machinery that supports those ideas. The concepts introduced here
form the foundation for inference, estimation, stochastic modeling, and learning from data. Probability
does not remove uncertainty, but it makes uncertainty manageable, and, in many settings, exploitable.
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Chapter 1: Events, Information, & Conditioning

When we talk about probability, we are really talking about events, how they relate to one another, and
how information alters their likelihood. At its core, this subject concerns the structure of uncertainty: what
it means for occurrences to be compatible, independent, or conditioned on further knowledge. The formulas
collected here express these relationships in their most compact form. They serve as the basic mechanisms
by which probability is assigned, combined, and updated, independent of any specific application.

1 Events, Independence, & Conditional Probability

Independence. Two events A and B are independent if

P (A ∩ B) = P (A) P (B).

This equality expresses that the occurrence of one event carries no
information about the other: the probability of the intersection
factors into the product of the individual probabilities. Equivalently,

P (B | A) = P (B) and P (A | B) = P (A),

whenever the conditional probabilities are defined.

Conditional Probability. For events A and B with P (A) > 0,
the conditional probability of B given A is

P (B | A) = P (A ∩ B)
P (A) .

Conditioning restricts attention to the portion of the sample space where A occurs, and renormalizes
probabilities accordingly.

2 Total Probability & Bayes’ Rule

Law of Total Probability. If {Hk} is a partition of the sample space Ω, then

P (E) =
∑

k

P (Hk) P (E | Hk).

This expresses the probability of E as a weighted combination over disjoint scenarios. Each term corre-
sponds to the contribution of E within Hk, scaled by P (Hk).
Special case: when Ω = A ∪ Ac,

P (B) = P (A) P (B | A) + P (Ac) P (B | Ac).

Bayes’ Theorem. For a partition {Hk} of Ω and an event E with P (E) > 0,

P (Hj | E) = P (E | Hj) P (Hj)∑
k

P (E | Hk) P (Hk)
.

Conceptually, Bayes’ theorem reweights the prior probabilities {P (Hj)} by how compatible each hypothesis
is with the observed evidence E, via the likelihoods {P (E | Hj)}, and then renormalizes so that the updated
probabilities {P (Hj | E)} again sum to one.
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Bayes shifts beliefs toward data & disagreement between prior and likelihood shows up as bias

Example. If {H1, H2} partitions Ω and

P (H1 | E) = a

a + b
, P (H2 | E) = b

a + b
,

then a and b represent the relative contributions of H1 and H2 to the likelihood of E. The posterior
probabilities are obtained by normalizing these contributions.

Issue Spotting Sequence
P: Is there a partition?

{Hk} or A ∪ Ac

U: Is an unconditional probability needed?

P (B)

T: Use total probability:
P (E) =

∑
k

P (Hk) P (E | Hk)

C: Is a conditional probability required?

P (B | A) = P (A ∩ B)
P (A)

B: Apply Bayes’ theorem:

P (Hj | E) = P (E | Hj) P (Hj)∑
k

P (E | Hk) P (Hk)

P (Hj) = prior, P (Hj | E) = posterior, P (E | Hj) = likelihood.

3 Long-Run Events & Borel–Cantelli

Probability Limits. Sequences of events play the role of limits for sets, describing what eventually
happens as n increases. For a sequence {An},

lim
n→∞

An =
∞⋃

n=1
An if Ak ⊆ Ak+1 (increasing sequence),

lim
n→∞

An =
∞⋂

n=1
An if Ak ⊇ Ak+1 (decreasing sequence).

In the increasing case, the limit collects everything that eventually occurs; in the decreasing case, it retains
only what persists forever.
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Increasing and decreasing events converge in both sets and probabilities.

Continuity of Probability. Continuity of probability states that limits of events and limits of their
probabilities are compatible for monotone sequences. If {An} is increasing, then

P
(

lim
n→∞

An

)
= lim

n→∞
P (An) = P

( ∞⋃
n=1

An

)
.

If {An} is decreasing, then

P
(

lim
n→∞

An

)
= lim

n→∞
P (An) = P

( ∞⋂
n=1

An

)
.

Thus, for monotone sequences, taking limits and taking probabilities commute.

Boole’s Inequality. Boole’s inequality provides a general upper bound on the probability of a union of
events:

P

( ∞⋃
n=1

An

)
≤

∞∑
n=1

P (An).

The probability of at least one An occurring cannot exceed the sum of their individual probabilities;
overlapping events only make the union smaller, never larger.

Infinitely Often Events. A sequence of events {Ak} is said to occur infinitely often (i.o.) if

∀n ≥ 1, ∃k ≥ n such that Ak occurs,

which is represented by the event
∞⋂

n=1

∞⋃
k=n

Ak.

This event captures the long-run behavior that Ak keeps happening for arbitrarily large indices k, rather
than eventually stopping.
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Borel–Cantelli Lemma. Let {An} be a sequence of events.

1. If
∞∑

n=1
P (An) < ∞, then

P

( ∞⋂
n=1

∞⋃
k=n

Ak

)
= 0.

In this case, the total probability mass assigned to the An is finite, and the events occur only finitely
many times almost surely.

2. If
∞∑

n=1
P (An) = ∞ and the events {An} are independent, then

P

( ∞⋂
n=1

∞⋃
k=n

Ak

)
= 1.

Here, the accumulated probability is infinite and, under independence, the events occur infinitely
often almost surely.

The lemma thus separates sequences that eventually die out from those that continue to occur indefinitely.
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Chapter 2: Distributions - How Randomness is Shaped

Randomness is not only about whether events occur, but also how often and in what patterns. A dis-
tribution assigns weight to possible outcomes and determines the characteristic “shape” of uncertainty.
Some distributions concentrate around a typical value, others decay slowly, and still others describe rare,
sporadic events.

1 Distribution Functions

A random variable can be characterized in several ways. The correct object depends on whether the
support is discrete, continuous, or mixed. The three fundamental descriptions are the probability mass
function, the probability density function, and the cumulative distribution function.

The PMF assigns probability at distinct points, the PDF spreads probability smoothly across values so areas under
the curve give interval probabilities, and the CDF records the cumulative total, rising from 0 to 1 as x increases.

Probability Mass Function (PMF). For a discrete random variable X with countable support X ,
the PMF assigns probability to individual outcomes:

fX(x) = P (X = x), x ∈ X .

It satisfies
fX(x) ≥ 0,

∑
x∈X

fX(x) = 1.

Probabilities of events are obtained by summing over the relevant points of the support.

Cumulative Distribution Function (CDF). The CDF gives the probability that the random variable
takes a value less than or equal to x:

FX(x) = P (X ≤ x), x ∈ R.

Every random variable has a CDF. It is non-decreasing, right-continuous, with limits

lim
x→−∞

FX(x) = 0, lim
x→+∞

FX(x) = 1.

For discrete distributions, FX(x) is a step function with jumps at the support points. For continuous
distributions, FX(x) is smooth and increases continuously.
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Probability Density Function (PDF). A distribution is absolutely continuous if there exists a
function f such that

FX(x) =
∫ x

−∞
f(t) dt.

In this case,
f(x) = F ′

X(x), f(x) ≥ 0,

∫ ∞

−∞
f(x) dx = 1.

The PDF describes how probability is distributed along the real line. Interval probabilities are obtained
by integration:

P (a ≤ X ≤ b) =
∫ b

a
f(x) dx.

A PDF exists only when the distribution is absolutely continuous. Discrete or mixed distributions may
not admit a single global density, but every distribution always has a valid CDF.

Object Support Type Formula Use

PMF Discrete fX(x) = P (X = x) Probabilities by summation
PDF Continuous fX(x) = F ′

X(x) Probabilities by integration
CDF All FX(x) = P (X ≤ x) Universal description of distribution

2 Core Discrete Distributions

Discrete distributions assign probability to individual points rather than ranges, so uncertainty is organized
over a countable set where every outcome can, in principle, be listed. They arise naturally whenever we
observe counts, trials, or selections, and many familiar models are connected.
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Bernoulli (p)

• Single trial with two outcomes: “success” with probability p and “failure” with probability 1 − p.

• Support {0, 1}, where 1 usually denotes success.

• Basic building block for Binomial, Geometric, and Negative Binomial models.

Binomial (n, p)

• Number of successes in n independent Bernoulli(p) trials.

• Support {0, 1, . . . , n}.

• Symmetric about n/2 when p = 1/2; right-skewed if p < 1/2, left-skewed if p > 1/2.

• Approximations:
Binomial(n, p) ≈ Poisson(λ = np) when n large and p small,

Binomial(n, p) ≈ Normal(np, np(1 − p)) when np, n(1 − p) ≳ 10.

Geometric (p)

• Number of trials required until the first success in i.i.d. Bernoulli(p) trials.

• Only discrete distribution with the memoryless property:

P (X > m + n | X > m) = P (X > n).

• Typically highly right-skewed with a long tail.

Hypergeometric (N1, N2, n)

• Number of “successes” in a sample of size n drawn without replacement from a finite population with
N1 successes and N2 failures (N = N1 + N2).

• Variance includes a finite-population correction factor N−n
N−1 .

• For large N with n ≪ N , Hypergeometric is well approximated by Binomial with p = N1/N .

Negative Binomial (r, p)

• Number of trials (or failures) required to observe r successes in i.i.d. Bernoulli(p) trials.

• Geometric is the special case r = 1.

• Useful for overdispersed count data where variance exceeds the mean (in contrast to Poisson).

• Right-skewed; heavier tail than Poisson with the same mean.

Poisson (λ)

• Counts the number of events occurring in a fixed interval of time or space when events arrive inde-
pendently at rate λ.

• Additive under independent summation:

X1 ∼ Poisson(λ1), X2 ∼ Poisson(λ2) ⇒ X1 + X2 ∼ Poisson(λ1 + λ2).
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• Approximates Normal(λ, λ) when λ is large.

Discrete Uniform on {1, . . . , m}

• All outcomes in the finite set {1, . . . , m} are equally likely.

• Natural model for an ideal die, random index, or symmetric label.

• Mean (m + 1)/2; variance (m2 − 1)/12 reflects symmetric spread around the center.

Multinomial (n, p)

• Joint distribution of counts (X1, . . . , Xk) from n independent trials with k outcome categories and
category probabilities p = (p1, . . . , pk).

• Generalizes the Binomial to more than two categories; each marginal Xi is Binomial(n, pi).

• Covariances between counts are negative:

Cov(Xi, Xj) = −npipj , i ̸= j,

reflecting competition between categories.

• Appears in contingency tables, categorical frequency counts, and empirical histograms.

3 Choosing a Discrete Model: Sampling vs Outcomes

With Replacement Without Replacement

2 Outcomes

Geometric
Negative Binomial

Bernoulli
Binomial

Hypergeometric

> 2 Outcomes Multinomial Multivariate Hypergeometric

Counting? ⇒ Poisson

1. Decide how sampling is done:

• With replacement ⇒ independent trials
• Without replacement ⇒ dependent trials

2. Count the number of outcome categories:

• Two outcomes (success/failure)
– With replacement: Bernoulli, Binomial, Geometric, Negative Binomial
– Without replacement: Hypergeometric

• More than two outcomes
– With replacement: Multinomial
– Without replacement: Multivariate Hypergeometric

3. If the task is counting events in time rather than sampling, use Poisson.
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Table of Discrete Distributions & Their Moments

Distribution PMF f(x) Mean µ Variance σ2

Bernoulli px(1 − p)1−x, x = 0, 1 p p(1 − p)

Binomial
(

n

x

)
px(1 − p)n−x, x = 0, 1, . . . , n np np(1 − p)

Geometric (1 − p)x−1p, x = 1, 2, 3, . . .
1
p

1 − p

p2

Hypergeometric
(N1

x

)( N2
n−x

)(N
n

) , x ≤ n, x ≤ N1, n − x ≤ N2 n
N1
N

n
N1
N

N2
N

N − N1
N − 1

Negative Binomial
(

x − 1
r − 1

)
pr(1 − p)x−r, x = r, r + 1, . . .

r

p

r(1 − p)
p2

Poisson λxe−λ

x! , x = 0, 1, 2, . . . λ λ

Uniform (discrete) 1
m

, x = 1, 2, . . . , m
m + 1

2
m2 − 1

12

Multinomial n!
x1! · · · xk!p

x1
1 · · · pxk

k ,
∑

xi = n,
∑

pi = 1 npi npi(1 − pi)
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4 Core Continuous Distributions

Continuous distributions assign probability through a density over an interval or the entire real line, so
individual points have probability zero and only ranges carry mass. The key features are the shape of the
density, the support, and how the parameters control concentration, tail behavior, and skewness.

Uniform (a, b)

• All points in [a, b] are equally likely; the density is constant.

• Represents complete indifference over a finite range.

Exponential (λ)

• Models waiting time until the first event in a Poisson process.

• Support [0, ∞); sharply right–skewed.

• Only continuous memoryless distribution:

P (X > s + t | X > s) = P (X > t).

Gamma (α, β)

• Sum of α independent Exponential(β) variables (integer α).

• Support [0, ∞); shape controlled by α, scale by β.

• Special cases: Exponential, Chi–square.

• Gamma function identities:

Γ(n) = (n − 1)! for integers, Γ
(

1
2

)
=

√
π,

Γ(n + 1) = n Γ(n).
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Chi-square (k)

• Distribution of ∑i Z2
i for standard Normals Zi.

• Support [0, ∞); right–skewed, approaches Normal as k increases.

• Special case of Gamma: χ2
k ∼ Γ

(
k
2 , 1

2

)
.

Beta (α, β)

• Defined on [0, 1]; models proportions and probabilities.

• Highly flexible shapes (U–shaped, uniform, symmetric, skewed).

• Beta function:
B(α, β) =

∫ 1

0
uα−1(1 − u)β−1 du = Γ(α)Γ(β)

Γ(α + β) .

• Conjugate prior for Bernoulli/Binomial data; α, β act like prior counts.

Normal (µ, σ2)

• Symmetric bell–shaped distribution centered at µ with spread σ2.

• Arises as the limit of sums/averages of many small independent effects (CLT).

• Completely determined by mean and variance; closed under affine transformations.

• Standardization: Z = (X − µ)/σ.

• Symmetry fact: the standard Normal density is symmetric about 0.

Cauchy (x0, γ)

• Heavy–tailed distribution; ratio of independent standard Normals.

• No finite mean or variance; moments are undefined.

• Sample averages do not converge; illustrates failure of typical limit laws.
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Table of Continuous Distributions & Their Moments

Distribution PDF f(x) CDF F (x) Range Mean µ Variance σ2

Beta (α, β) Γ(α + β)
Γ(α)Γ(β)xα−1(1 − x)β−1 Ix(α, β) 0 < x < 1 α

α + β

αβ

(α + β)2(α + β + 1)

Chi-square (r) 1
2r/2Γ(r/2)

xr/2−1e−x/2 P

(
r

2 ,
x

2

)
x ≥ 0 r 2r

Exponential (θ) 1
θ

e−x/θ 1 − e−x/θ x ≥ 0 θ θ2

Gamma (α, θ) 1
Γ(α)θα

xα−1e−x/θ P

(
α,

x

θ

)
x ≥ 0 αθ αθ2

Normal (µ, σ2) 1
σ

√
2π

e−(x−µ)2/(2σ2) Φ
(

x − µ

σ

)
x ∈ R µ σ2

Uniform (a, b) 1
b − a

x − a

b − a
a ≤ x ≤ b

a + b

2
(b − a)2

12

Cauchy (m, d) 1
πd
[
1 +

(
x−m

d

)2] 1
π

tan−1
(

x − m

d

)
+ 1

2 x ∈ R undefined undefined
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5 Normal & Standard Normal

Normal Distribution. A random variable X is Normal with mean µ and variance σ2 if

X ∼ N (µ, σ2), fX(x) = 1√
2π σ

exp
(

−(x − µ)2

2σ2

)
.

It is symmetric about µ, completely determined by its mean and variance, and closed under linear trans-
formations.

CDF.
FX(x) = P (X ≤ x) = 1√

2π σ

∫ x

−∞
exp

(
−1

2

(
w − µ

σ

)2
)

dw.

Standardization. Any Normal variable can be mapped to a Standard Normal by

Z = X − µ

σ
, Z ∼ N (0, 1).

Standard Normal.

Φ(z) = P (Z ≤ z) = 1√
2π

∫ z

−∞
e−w2/2 dw, ϕ(z) = 1√

2π
e−z2/2.

Φ(−z) = 1 − Φ(z), P (Z > z) = 1 − Φ(z).
Tables or numerical routines for Φ(z) allow probability calculations for any Normal variable via standard-
ization.

Jointly Gaussian. If (X, Y ) are jointly Normal, independence is equivalent to zero correlation:

(X, Y ) jointly Gaussian, ρ = 0 ⇐⇒ X independent of Y.

The joint density is

fX,Y (x, y) = 1
2πσXσY

√
1 − ρ2 exp

{
− 1

2(1 − ρ2)
[(x − µX

σX

)2
− 2ρ

(
x − µX

σX

)(
y − µY

σY

)
+
(

y − µY

σY

)2]}
.

Normal Approximations. Many discrete or skewed distributions become approximately Normal when
parameters are large:

Binomial: B(n, p) ≈ N (np, npq)

Negative Binomial: NB(n, p) ≈ N
(

n

p
,

nq

p2

)
Poisson: P (λ) ≈ N (λ, λ)

Gamma: Γ(n, θ) ≈ N (nθ, nθ2)

Chi-square: χ2(n) ≈ N (n, 2n).

These approximations arise from the Central Limit Theorem.
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6 Signal Detection & Hypothesis Testing.

Signal detection treats observation as a noisy measurement that may or may not contain a structured
effect, and frames the problem as choosing between competing hypotheses based on that observation. The
goal is to design a decision rule (here, a threshold on a Normal measurement) that balances false alarms
and missed detections, and to quantify this tradeoff through error probabilities and the power of the test.

We compare two hypotheses:

H0 : No signal (just noise), X ∼ N (0, σ2)

H1 : Signal is present, X ∼ N (1, σ2)

A decision threshold T determines which hypothesis we accept:X ≤ T ⇒ Accept H0 (No signal)

X > T ⇒ Accept H1 (Signal detected)

Error Probabilities.

α ≜ P [Type I Error] = P [reject H0|H0 true] = P [X > T |H0]

β ≜ P [Type II Error] = P [accept H0|H1 true] = P [X ≤ T |H1]

Here, α is the false alarm probability, and β is the miss probability.
Power.

Power = 1 − β = P [correct detection | H1]

The power increases as the distributions separate, or as T moves left and measures how likely we are to
correctly say “there is a signal” when one truly exists.

Normal Formulas for α & β via Standardization. Under H0 : X ∼ N (0, σ2) and H1 : X ∼ N (1, σ2),
standardization gives

α = P [X > T | H0] = 1 − Φ
(

T

σ

)
, β = P [X ≤ T | H1] = Φ

(
T − 1

σ

)
.

As T increases, α decreases and β increases, reflecting the tradeoff between false alarms and missed
detections. The separation

d′ ≜
1 − 0

σ
= 1

σ

measures how distinguishable the two hypotheses are: larger d′ yields lower error probabilities for a well-
chosen threshold.
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Chapter 3: Moments & Dependence

Moments are the language of structure in probability. They describe not only where a distribution is cen-
tered, but how tightly it spreads, how asymmetrically it leans, and how heavy its tails may be. Dependence
extends this language from single variables to pairs, capturing whether two quantities tend to rise and fall
together, or whether they vary independently despite sharing the same environment. Together, moments
and dependence provide a concise summary of the behavior of random variables, isolating the features that
matter across models, data, and applications.

1 Expectation & Variance

Expectation summarizes the typical level of a random variable, while variance quantifies how much values
fluctuate around that level. Together they are the primary numerical descriptors of a distribution’s location
and spread, and they extend naturally to conditional settings and to estimators built from data.

Expectation

Definition. The expectation E[X] of a random variable X is its average value under the distribution of
X:

E[X] = µ

=


∑

x

x fX(x), discrete,∫ ∞

−∞
x fX(x) dx, continuous.

Conceptually, E[X] is the “center of mass” of the distribution: more probable outcomes pull the average
more strongly.

Linearity and sums. Expectation is linear, so constants and sums pass through:

E[aX + b] = a E[X] + b, E

[
n∑

i=1
aiXi

]
=

n∑
i=1

ai E[Xi].

No independence is required; this is purely an algebraic property of the integral/sum.

Products under independence. If X and Y are independent,

E[XY ] = E[X] E[Y ].

Independence removes any interaction term: on average, the product behaves like the product of averages.

Conditional expectation. Conditional expectation refines the average once additional information Y = y
is known:

E[X | Y = y] =


∑

x

x pX|Y (x | y), discrete,

∫ ∞

−∞
x fX|Y (x | y) dx, continuous.

For jointly distributed (X, Y ),

E[X] =
∫∫

x fX,Y (x, y) dx dy =
∫

E[X | Y = y] fY (y) dy,

which links the joint density, the conditional expectation, and the marginal density of Y .
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Law of total expectation. Averaging conditional expectations over Y recovers the unconditional mean:

E[X] = EY

[
E[X | Y ]

]
.

Operationally: Compute the mean of X in each scenario Y = y, then average these scenario-wise means
according to how likely each y is.

Expectation Toolbox

Topic Formula Interpretation

Definition E[X] =
∑

x

xfX(x) or E[X] =
∫

xfX(x) dx Center / average value

Linearity E[aX + b] = aE[X] + b Shift and scale pass through

Sums E

[∑
i

aiXi

]
=
∑

i

aiE[Xi] Expectation distributes over sums

Independence X ⊥ Y ⇒ E[XY ] = E[X]E[Y ] Product of means when independent

Conditional mean E[X | Y = y] Mean with Y = y fixed

Total expectation E[X] = EY [E[X | Y ]] Average of scenario-wise means

Variance

Definition. The variance of X measures the typical squared deviation from its mean:

V [X] = σ2
X ,

= E
[
(X − E[X])2],

= E[X2] − (E[X])2.

A large variance means realizations of X are widely scattered around E[X]; a small variance means they
are tightly clustered.

Scaling and shifts. Adding a constant does not change variability, while scaling stretches or contracts it:

V [aX + b] = a2 V [X].

Sums and linear combinations. For any collection {Xi}n
i=1,

V

[
n∑

i=1
Xi

]
=

n∑
i=1

V [Xi] + 2
∑

1≤i<j≤n

cov(Xi, Xj).

Variance of a sum consists of the individual variances plus all pairwise covariance terms. If the Xi are
independent, all covariances vanish and

V
[ n∑

i=1
Xi

]
=

n∑
i=1

V [Xi].
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For two variables and constants a, b,

V [aX + bY ] = a2V [X] + b2V [Y ] + 2ab cov(X, Y ),

which is the basic variance formula for linear combinations.

Product of independent variables. When X and Y are independent,

V [XY ] = E[X2]E[Y 2] −
(
E[X]E[Y ]

)2
,

expressing the variability of a product in terms of second moments and means of the factors.

Conditional variance and total variance. Conditional variance quantifies spread once Y is fixed:

V [X | Y ] = E
[
(X − E[X | Y ])2 | Y

]
= E[X2 | Y ] −

(
E[X | Y ]

)2
.

The law of total variance decomposes overall variability into within-scenario and between-scenario parts:

V [X] = EY

[
V [X | Y ]

]
+ VY

(
E[X | Y ]

)
.

Bias–variance decomposition for estimators. For an estimator θ̂ of a parameter θ,

MSE(θ̂) = E
[
(θ̂ − θ)2] = V [θ̂] +

(
E[θ̂] − θ

)2
,

with
Squared Bias =

∣∣E[θ̂] − θ
∣∣2.

Here V [θ̂] captures random fluctuation of the estimator, while the squared bias measures systematic offset
from the true parameter.

Variance Toolbox

Topic Formula Interpretation

Definition V [X] = E[(X − E[X])2] Spread around the mean

Moment form V [X] = E[X2] − (E[X])2 Uses first and second moments

Scaling V [aX + b] = a2V [X] Shifts irrelevant, scaling matters

Sums V

[∑
i

Xi

]
=
∑

i

V [Xi] + 2
∑
i<j

cov(Xi, Xj) Variances plus covariances

Independence Xi indep ⇒ V

[∑
i

Xi

]
=
∑

i

V [Xi] Covariances vanish

Total variance V [X] = E[V [X | Y ]] + V (E[X | Y ]) Within + between variability

Bias–variance MSE(θ̂) = V [θ̂] + (E[θ̂] − θ)2 Random + systematic error
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2 Covariance and Correlation

Covariance and correlation summarize how two random variables change together. Covariance measures
the direction and magnitude of joint variation; correlation rescales it to a dimensionless index between −1
and 1. Both concepts extend naturally to conditional settings.

The shape of each scatter shows the sign and strength of linear dependence.

Covariance

Definition. The covariance of (X, Y ) is

cov(X, Y ) = E
[
(X − E[X])(Y − E[Y ])

]
= E[XY ] − E[X]E[Y ].

It is positive when X and Y move together, negative when they move oppositely, and zero when they show
no linear co-variation.

Basic properties. Covariance behaves linearly in both arguments:

cov(aX + b, cY + d) = ac cov(X, Y ).

It is symmetric and identifies variance as a special case:

cov(X, Y ) = cov(Y, X), cov(X, X) = V [X].

Linearity over sums. For linear combinations,

cov

∑
i

aiXi,
∑

j

bjYj

 =
∑

i

∑
j

aibj cov(Xi, Yj).

Variance of a sum is a sum of variances and covariances:

V
[ n∑

i=1
Xi

]
=

n∑
i=1

V [Xi] + 2
∑

1≤i<j≤n

cov(Xi, Xj).

Relation to product expectation.

E[XY ] = cov(X, Y ) + E[X] E[Y ].

Covariance captures the deviation from E[X]E[Y ].
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Linear transformations. If Y = aX + b then

cov(X, Y ) = a V [X].

More generally,
V [aX + bY ] = a2V [X] + b2V [Y ] + 2ab cov(X, Y ).

Conditional covariance and total covariance. Conditioning on Z,

cov(X, Y | Z) = E[XY | Z] − E[X | Z]E[Y | Z],

and averaging yields the total covariance decomposition:

cov(X, Y ) = EZ

[
cov(X, Y | Z)

]
+ covZ

(
E[X | Z], E[Y | Z]

)
.

The first term is “within-Z” co-variation; the second is co-variation of conditional means.

Correlation

Definition. Correlation rescales covariance by the marginal standard deviations:

ρXY = cov(X, Y )
σX σY

, −1 ≤ ρXY ≤ 1.

It measures direction and strength of linear dependence on a unitless scale.

Interpretation.

ρXY = 1 (perfect positive), ρXY = −1 (perfect negative), ρXY = 0 (no linear association).

Relation back to covariance.
cov(X, Y ) = ρXY σXσY .

Covariance captures raw co-variation; correlation captures standardized strength.

Key Differences of Covariance vs Correlation

Covariance Correlation

What it measures Direction of the relationship (posi-
tive, negative, or none)

Direction and strength of the rela-
tionship (scaled between -1 and 1)

Scale Depends on the units and magni-
tude of X and Y

Standardized, does not depend on
units

Range Unbounded, can take any real value Always between −1 and 1

Interpretation Shows direction and rough magni-
tude of co-movement

Shows direction and strength of lin-
ear relationship

Use case Understanding the direction of a re-
lationship within one dataset

Comparing relationships across dif-
ferent datasets
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3 Higher Moments & Central Moments

Moments extend the ideas of mean and variance by describing the global shape of a distribution. Raw
moments capture the average value of Xk relative to the origin, while central moments capture the average
value of (X − µ)k relative to the mean. Increasing k emphasizes the contribution of extreme values, so
higher moments are naturally connected to tail behavior, asymmetry, and peakedness.

Raw Moments

Definition. The kth moment (raw moment) of X is

E[Xk] =


∑

x

xk p(x), discrete,

∫ ∞

−∞
xk f(x) dx, continuous.

Raw moments describe how the distribution is positioned relative to the origin.

Central Moments

Definition. The kth central moment is the moment of deviations from the mean:

E[(X − µ)k] =


∑

x

(x − µ)k p(x), discrete,

∫ ∞

−∞
(x − µ)k f(x) dx, continuous.

Central moments measure shape relative to the mean, rather than absolute values.

A moment exists only if the corresponding expectation is finite; heavy-tailed distributions may have lower-
order moments but fail to have higher-order ones.

Key Cases

1. First moment: E[X] = µ
Location of the distribution.

2. Second central moment: E[(X − µ)2] = σ2

Overall spread around the mean.

3. Third central moment: describes skewness
Positive skew: longer right tail. Negative skew: longer left tail.

4. Fourth central moment: describes kurtosis
Measures tail thickness and peak sharpness relative to a normal distribution.

Moments and central moments are complementary: raw moments locate the distribution relative to zero,
central moments describe how it stretches and bends around its mean.

Standardized moments divide the kth central moment by σk, removing scale and producing unitless mea-
sures such as skewness (k = 3) and kurtosis (k = 4).

The figure below summarizes kth moments and central moments for standard distributions.
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Figure: First Four Central Moments

The first four moments successively describe location, dispersion, asymmetry, and tail behavior. Higher moments
emphasize extremes, and for heavy-tailed distributions they may fail to exist, which is itself informative.

On the next page is a table displaying the explicit formulas for E[Xk] and E[(X − µ)k] for the discrete and
continuous families covered.
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kth Moments & Central Moments Table

Distribution kth moment E[Xk] kth central moment E[(X − µ)k]

Bernoulli (p) p (1 − p)(−p)k + p(1 − p)k

Binomial (n, p)
n∑

j=0
jk

(
n

j

)
pj(1 − p)n−j

n∑
j=0

(j − np)k

(
n

j

)
pj(1 − p)n−j

Geometric (p) p
∞∑

x=1
xk(1 − p)x−1 p

∞∑
x=1

(
x − 1

p

)k(1 − p)x−1

Poisson (λ) e−λ
∞∑

x=0

xkλx

x! e−λ
∞∑

x=0

(x − λ)kλx

x!

Negative Binomial (r, p)
∞∑

x=0
xk

(
r + x − 1

x

)
(1 − p)xpr

∞∑
x=0

(
x − r(1−p)

p

)k(r + x − 1
x

)
(1 − p)xpr

Discrete Uniform {1, . . . , n} 1
n

n∑
x=1

xk 1
n

n∑
x=1

(
x − n+1

2

)k

Beta (α, β) Γ(α + k)Γ(α + β)
Γ(α)Γ(α + β + k)

k∑
j=0

(
k

j

)
(− α

α+β ) k−j Γ(α + j)Γ(α + β)
Γ(α)Γ(α + β + j)

Chi-square (r) 2k Γ( r
2 + k)
Γ( r

2)

k∑
j=0

(
k

j

)
(−r) k−j 2j Γ( r

2 + j)
Γ( r

2)

Exponential (θ) k! θk
k∑

j=0

(
k

j

)
(−θ) k−j j! θj

Gamma (α, θ) θk Γ(α + k)
Γ(α)

k∑
j=0

(
k

j

)
(−αθ) k−j θj Γ(α + j)

Γ(α)

Normal (µ, σ2)
⌊k/2⌋∑
j=0

k!
(k − 2j)! j! 2j

µ k−2jσ2j

0, k odd,

(k − 1)!! σk, k even.

Uniform (a, b) bk+1 − ak+1

(k + 1)(b − a)
1

b − a

∫ b

a

(
x − a+b

2

)k
dx

Cauchy (m, d) undefined (no finite moments) undefined (no mean)
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4 Sample Statistics & Standardization

Sample statistics are empirical counterparts of population quantities. They are computed from data and
used to estimate moments, dependence, and standardized values. As sample size grows, these estimates
converge to their population limits.

Population vs Sample Quantities

Population parameters describe the underlying distribution:

µX , σ2
X , σX , σXY .

Sample statistics estimate them from observations:

X̄n → µX , s2
X → σ2

X , sX → σX , sXY → σXY .

Sample covariance is bounded by Cauchy–Schwarz:

s2
XY ≤ s2

Xs2
Y .

Sample Statistics (from X1, . . . , Xn and Y1, . . . , Yn)

Sample mean: X̄n = 1
n

n∑
k=1

Xk,

Sample variance: s2
X = 1

n − 1

n∑
k=1

(Xk − X̄n)2,

sX =
√

s2
X ,

Sample covariance: sXY = 1
n − 1

n∑
k=1

(Xk − X̄n)(Yk − Ȳn).

These are empirical estimates of mean, variance, and covariance.

The factor 1/(n − 1) in s2
X (instead of 1/n) makes the sample variance an unbiased estimator of σ2

X when
the observations are i.i.d.

Sample Mean and Sample Sum (i.i.d. case)

Assume X1, . . . , Xn are i.i.d. with

E[Xi] = µX , V [Xi] = σ2
X < ∞.

Sample mean.

X̄n = 1
n

n∑
k=1

Xk, E[X̄n] = µX , V [X̄n] = σ2
X

n
.

The sample mean is unbiased, and its variance decreases with n.
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Sample sum.

Sn =
n∑

k=1
Xk, E[Sn] = n µX , V [Sn] = n σ2

X .

The total scales linearly with n, both in expectation and in variance.

Both X̄n and s2
X are unbiased estimators of their corresponding population quantities under the i.i.d.

assumption.

Sample Correlation

rXY = sXY

sXsY
.

This is a sample-based estimate of ρXY using empirical variances and covariance.

Standardization

Standardization rescales variables to zero mean and unit variance.

Population standardization.

Z = X − µX

σX
, E[Z] = 0, V [Z] = 1.

Sample z-scores.

zk = Xk − X̄n

sX
, wk = Yk − Ȳn

sY
.

These satisfy
1
n

n∑
k=1

zk = 0,
1

n − 1

n∑
k=1

(zk − z̄)2 = 1.

After standardization, sample correlation becomes the sample covariance of the z-scores:

rXY = 1
n − 1

n∑
k=1

zkwk.

Standardization enables comparison across variables, since all are brought to a common scale (of zero mean
and unit variance) before further analysis.
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Chapter 4: Limits, Averages & Approximations

Randomness is often described as unpredictable, yet long
sequences of random outcomes exhibit a striking
regularity. As observations accumulate, averages stabilize,
fluctuations acquire a characteristic scale and shape, and
crude uncertainty gives way to quantitative control.

This chapter formalizes that transition from noise to
structure: we describe how sequences of random variables
can converge, how the law of large numbers turns
repeated sampling into a reliable notion of “typical
behavior,” and how the central limit theorem explains the
ubiquitous appearance of the normal distribution.

1 Modes of Convergence

Sequences of real numbers admit a single, familiar notion of convergence. For random variables, however,
there are several natural ways to express that a sequence “gets close” to a limit. Each mode of convergence
captures a different balance between pointwise behavior, probabilistic control, and moment information.
These distinctions matter for limit theorems, because laws like LLN and CLT are stated in specific modes.
Recall first the usual definition of convergence for a numerical sequence

{an, n ≥ 0}, an ∈ R,

which converges to a∗ ∈ R if, for every ε > 0, there exists N such that |an − a∗| < ε for all n ≥ N .
In probability, we have a sequence of random variables

{Xn, n ≥ 0},

and we want to define what it means for this sequence to converge to a random variable X. Each Xn is a
measurable function from the sample space Ω to R, so we are now tracking convergence of entire random
functions rather than single numbers. This leads to several distinct, but related, notions of stochastic
convergence.

Stochastic Convergence

Mode of Convergence Definition / Mathematical Condition

Almost Surely (a.s.) / Probability One Xn
o−−→ X ⇔ P (limn→∞ Xn = X) = 1

In Probability (p) Xn
p−−→ X ⇔ limn→∞ P (|Xn − X| > ε) = 0, ∀ ε > 0

In Mean Square (m.s.) Xn
m−−→ X ⇔ limn→∞ E

[
(Xn − X)2] = 0

In Mean of Order p Xn
Lp

−−→ X ⇔ limn→∞ E[|Xn − X|p] = 0, for p ≥ 1

In Distribution (d) Xn
d−−→ X ⇔ limn→∞ FXn(x) = FX(x)

at continuity points of FX
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Conceptual Descriptions.

• Almost sure convergence requires that for almost every outcome ω, the sample-path values Xn(ω)
eventually stay arbitrarily close to X(ω). It is the strongest pointwise notion and speaks about what
happens on individual realizations, except on a set of probability zero.

• Convergence in probability demands that the probability of a noticeable deviation |Xn − X| > ε
becomes negligible as n grows. It does not insist on pathwise stabilization, but it ensures that large
discrepancies become rare.

• Mean-square (and Lp) convergence controls the size of the error in terms of moments. Mean-
square convergence requires the second moment of the error to vanish; more generally, Lp convergence
requires the p-th moment of the error to go to zero. These are strong forms of convergence that
quantify both proximity and tail behavior.

• Convergence in distribution only asks that the distributions of Xn approach the distribution of
X at the level of CDFs. It does not require Xn and X to be defined on the same space or to be
comparable on a sample-path basis. This is the weakest mode, but it is central in limit theorems
such as the CLT.

Implication Structure. These modes of convergence are not equivalent, but there are standard implica-
tions:

convergence in m.s. ⇒ convergence in probability ⇒ convergence in distribution,

convergence a.s. ⇒ convergence in probability ⇒ convergence in distribution.

Mean-square and almost sure convergence therefore provide stronger guarantees, while convergence in
distribution is often the minimal notion needed to describe asymptotic shapes of distributions.

Visualizing Modes of Stochastic Convergence
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Deviation Inequalities and Convergence. To turn qualitative convergence statements into quantita-
tive control, we often need bounds on the probability of large deviations. Simple inequalities relate tail
probabilities to expectations and variances, and they are the basic tools behind many proofs of convergence
in probability and almost sure convergence (for example, in the law of large numbers).

Markov’s Inequality. For a nonnegative random variable X ≥ 0 and any threshold a > 0,

P (X ≥ a) ≤ E[X]
a

.

Conceptually, if the mean of X is small relative to a, then the probability that X exceeds a must be
small. Markov’s inequality is very general (it uses only E[X]), and it is often the first step in bounding
tail probabilities and establishing convergence in probability.

Chebyshev’s Inequality. For a random variable X with finite mean µ = E[X] and variance σ2 = Var(X),

P (|X − µ| ≥ kσ) ≤ 1
k2 , k > 0.

Equivalently, for any ε > 0,

P (|X − µ| ≥ ε) ≤ σ2

ε2 .

Chebyshev’s inequality refines Markov’s inequality by using second-moment information. It quantifies how
rarely X can stray far from its mean, given its variance. Applied to sample averages, Chebyshev’s inequality
yields a direct proof of the weak law of large numbers: as the sample size increases, the probability of a
large deviation of the average from the true mean must go to zero.

Exponential density with shaded tail region P (X ≥ a);
Markov’s inequality bounds this tail probability by
E[X]/a, a very general but often loose bound that uses
only the mean.

Bell-shaped density with shaded tails {|X − µ| ≥ kσ};
Chebyshev’s inequality bounds this probability by 1/k2,
ensuring most of the mass lies within a few standard
deviations of µ, regardless of the exact distribution.
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2 Law of Large Numbers

The law of large numbers formalizes the intuitive “law of averages”: when we repeat the same random
experiment many times, the average outcome becomes stable and representative of the underlying distri-
bution. Random fluctuations do not disappear, but they become increasingly small relative to the number
of observations, so the sample mean behaves more and more like a deterministic quantity.

Setup. Let X1, X2, . . . be i.i.d. random variables with

µX = E[Xk], σ2
X = Var(Xk) < ∞.

The sample mean based on the first n observations is

X̄n = 1
n

n∑
k=1

Xk.

By linearity of expectation and basic variance rules,

E[X̄n] = µX , Var(X̄n) = σ2
X

n
.

Thus the sample mean is an unbiased estimator of µX , and its variance shrinks at rate 1/n; the typical
size of its fluctuations is of order 1/

√
n.

Law of Large Numbers (LLN). Under the assumptions above, the sample mean converges to the
population mean as n → ∞:

X̄n −→ µX .

This expresses that for large samples the empirical average is close to the true mean with high reliability.

Modes of convergence. Different versions of the LLN specify the sense in which X̄n converges:

Law of Large Numbers Variant Limit Statement

Weak LLN (in probability) X̄n
P−−→ µX ⇐⇒ ∀ ε > 0, P

(
|X̄n − µX | > ε

)
−−−→
n→∞

0.

Strong LLN (almost surely) X̄n
a.s.−−→ µX ⇐⇒ P

(
limn→∞ X̄n = µX

)
= 1.

Mean-square LLN

X̄n
m−−→ µX ⇐⇒ E

[
(X̄n − µX)2

]
−−−→
n→∞

0.

In our i.i.d. setting, E
[
(X̄n − µX)2

]
= Var(X̄n) = σ2

X
n −→ 0,

so mean-square convergence holds automatically when σ2
X < ∞.

Connection to Deviation Inequalities. Using Chebyshev’s inequality,

P
(
|X̄n − µX | ≥ ε

)
≤ Var(X̄n)

ε2 = σ2
X

nε2 ,

which tends to zero as n → ∞. This provides a simple proof of the weak LLN: as we collect more data,
the probability of a noticeable deviation of X̄n from µX becomes arbitrarily small.

All versions of the LLN capture the same qualitative message: empirical averages are reliable summaries of
long-run behavior. For large n, the sample mean X̄n is tightly concentrated around µX , and limit theorems
such as the central limit theorem (next section) refine this picture by describing the shape and scale of its
remaining fluctuations.
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3 Central Limit Theorem & Standardization

The law of large numbers explains that sample averages stabilize around their mean; it does not, however,
describe how they fluctuate. The central limit theorem (CLT) refines this picture by showing that after
proper rescaling, these fluctuations acquire a universal, approximately normal shape. This is what justifies
the use of Gaussian approximations, z-scores, and standard normal tables in probability and statistics.

Setup. Let X1, X2, . . . be i.i.d. random variables with µX = E[Xk] and σ2
X = Var(Xk) < ∞, and define

the sample mean and sum

X̄n = 1
n

n∑
k=1

Xk, Sn =
n∑

k=1
Xk.

From the previous section (LLN) we know that X̄n → µX as n → ∞, and that Var(X̄n) = σ2
X/n. The

CLT describes the limiting distribution of the centered and scaled quantities

√
n (X̄n − µX) or Sn − nµX√

n
.

Central Limit Theorem (CLT). Under the i.i.d. finite-variance assumptions above,

Zn = X̄n − µX

σX/
√

n
=

√
n (X̄n − µX)

σX

d−→ Z ∼ N (0, 1),

or equivalently,
Zn = Sn − nµX√

n σX

d−→ N (0, 1).

That is, as n → ∞, the standardized sample mean (or sum) converges in distribution to a standard normal
random variable. For moderately large n, we can already use the approximation

X̄n − µX

σX/
√

n
≈ Z ∼ N (0, 1),

even when the individual Xk are not Gaussian.

CLT: Standardized Sample Means from a Skewed Distribution

As n increases, the curves collapse onto N(0, 1), illustrating the central limit theorem in action.
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Notes.

• The LLN tells us X̄n → µX , so the average settles near its mean.

• The CLT adds that the shape of the fluctuations around µX is approximately normal, with typical
size of order σX/

√
n.

• Convergence is in distribution: Probabilities for events involving X̄n can be approximated using
the standard normal CDF for large n, but there is no pathwise convergence of Zn to a fixed random
variable.

Standardization. Standardization is the simple affine transformation that converts a random variable
to zero mean and unit variance. It is the basic operation that connects raw variables to the standard
normal distribution in the CLT.

Single observation.
Z = X − µX

σX
, E[Z] = 0, Var(Z) = 1.

If X ∼ N (µX , σ2
X), then Z ∼ N (0, 1) exactly. For general X, this is just a rescaling; no normality is

implied.

Sample mean.

Z = X̄n − µX

σX/
√

n
, E[Z] = 0, Var(Z) = 1.

By the CLT, for large n,
Z ≈ N (0, 1),

so probabilities involving X̄n can be approximated using standard normal quantiles. This is the foundation
for confidence intervals and many classical hypothesis tests.

Sample sum.
Z = Sn − nµX

σX
√

n
, E[Z] = 0, Var(Z) = 1,

with the same asymptotic normality:

Z ≈ N (0, 1) for large n.

This form is convenient when working directly with aggregate quantities (e.g., total claims, total demand,
total return).

Standardization extracts a dimensionless, unit-variance view of random fluctuations. The central limit
theorem then asserts that, under mild conditions, the standardized fluctuations of sums and averages
become approximately Gaussian.
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4 Confidence Intervals and Sample Size

The central limit theorem turns the sample mean into an approximately normal quantity after standard-
ization. Confidence intervals exploit this fact in the reverse direction: instead of asking for the distribution
of X̄n given µX , we construct a random interval around X̄n that is designed to contain the unknown mean
µX with a prescribed long-run frequency.

Setup. When σX is known and n is sufficiently large, the CLT gives the approximation

Zn = X̄n − µX

σX/
√

n
≈ Z ∼ N (0, 1).

Confidence intervals for the mean (known variance). For a desired confidence level 1 − α, we
choose zα/2 so that

P (−zα/2 ≤ Z ≤ zα/2) = 1 − α, Z ∼ N (0, 1).
Using the CLT approximation for Zn,

P

(
−zα/2 ≤ X̄n − µX

σX/
√

n
≤ zα/2

)
≈ 1 − α.

Rearranging the inequalities yields

P

(
X̄n − zα/2

σX√
n

≤ µX ≤ X̄n + zα/2
σX√

n

)
≈ 1 − α.

Thus a (1 − α) confidence interval for µX is

µX ∈
[
X̄n − zα/2

σX√
n

, X̄n + zα/2
σX√

n

]
The confidence level 1 − α is the long-run proportion of intervals that would contain µX if we repeatedly
drew new samples of size n and rebuilt the interval each time. For a given dataset, the interval is random
while µX is fixed; the statement concerns the procedure’s coverage, not a probability distribution on µX .

Determining sample size. Often we specify both a target confidence level (1−α) and a desired precision
ε > 0, interpreted as the maximum acceptable half-width:

zα/2
σX√

n
≤ ε.

Solving for n gives the sample size requirement

ε = zα/2
σX√

n
=⇒ n ≥

(
zα/2σX

ε

)2
.

Larger confidence levels (smaller α) or smaller tolerances ε require larger n, reflecting the basic trade-off
between certainty and precision.

Common confidence levels and critical values.

Confidence level α zα/2

90% 0.10 1.645
95% 0.05 1.960
99% 0.01 2.576

These z-values are used throughout to translate desired coverage probabilities into concrete margins of
error and sample size requirements via the normal approximation.

36



Chapter 5: Transformations & Generating Functions

Transformations and generating functions describe how probability laws respond to algebraic operations.
Transformations track how distributions are reshaped under mappings of one or several random vari-
ables, preserving probability while redistributing mass and density. Generating functions encode an entire
distribution into a single analytic object, turning operations on random variables into differentiation, mul-
tiplication, and limits. Together, these tools replace direct manipulation of densities with structural rules,
providing a concise way to analyze sums, moments, and distributional behavior.

1 Transformations of Random Variables

Transformations describe how probability distributions change under deterministic mappings of random
variables. Probability itself is conserved, but its representation, mass in the discrete case and density in
the continuous case, is reshaped by the geometry of the transformation. The guiding principle is invariance
of probability: events and their transformed images must carry the same probability.

Discrete Transformations. Let X be a discrete random variable with pmf pX(x), and suppose

Y = g(X)

is a one-to-one transformation. Each value y of Y corresponds uniquely to a value x = g−1(y) of X, so
probability mass is transferred directly:

pY (y) = pX

(
g−1(y)

)
.

When the transformation is not invertible or when the pmf of X is inconvenient to compute directly, the
distribution of Y can always be obtained via the cumulative distribution function:

FY (y) = P (Y ≤ y) = P (g(X) ≤ y),

which remains valid regardless of the form of g.

Continuous Transformations. Let X be a continuous random variable with pdf fX(x), and let

Y = g(X)

where g is monotonic and differentiable. Probability density transforms according to the change of variables:

fY (y) = fX

(
g−1(y)

) ∣∣∣∣dx

dy

∣∣∣∣ , x = g−1(y).

The absolute derivative accounts for how intervals in the x-space expand or contract when mapped into the
y-space. Regions where g stretches space correspond to lower density, while compression increases density,
ensuring total probability is preserved.

Monotone Continuous Transformation

Monotone change of variables illustrating density reshaping under y = g(x) = ex.
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If g is not monotonic, multiple values of X may map to the same value of Y . In this case, the density of
Y is obtained by summing the contributions from all preimages {xk} satisfying y = g(xk):

fY (y) =
∑

k

fX(xk)
∣∣∣∣dx

dy

∣∣∣∣
x=xk

.

Each branch contributes additively, reflecting the fact that probability mass from different regions of the
original space accumulates at the same point in the transformed space.

Joint Transformations and Change of Variables. Transformations naturally extend to multiple
random variables. Let (X, Y ) be a pair of continuous random variables with joint pdf fX,Y (x, y), and
define new variables

U = g(X, Y ), V = h(X, Y ),
where the transformation is invertible with inverse

x = x(u, v), y = y(u, v).
The joint pdf of (U, V ) is then

fU,V (u, v) = fX,Y

(
x(u, v), y(u, v)

) ∣∣∣∣d(x, y)
d(u, v)

∣∣∣∣ .
This formula generalizes the one-dimensional change of variables and ensures that probability assigned to
regions in the (x, y)-plane matches the probability assigned to their images in the (u, v)-plane.

Jacobian Determinant. The Jacobian determinant is defined as

d(x, y)
d(u, v) = det


∂x

∂u

∂x

∂v

∂y

∂u

∂y

∂v


.

It measures the local area distortion induced by the transformation. Values greater than one indicate local
expansion, while values less than one indicate compression. In higher dimensions, the Jacobian plays the
same role, scaling volume elements so that total probability remains invariant under coordinate changes.

Formula Summary Table

Transformation Type Distribution Formula

Discrete, one-to-one pY (y) = pX

(
g−1(y)

)
Discrete (via CDF) FY (y) = P (Y ≤ y) = P

(
g(X) ≤ y

)
Continuous, monotone fY (y) = fX

(
g−1(y)

) ∣∣∣∣dx

dy

∣∣∣∣
Continuous, non-monotone fY (y) =

∑
k

fX(xk)
∣∣∣∣dx

dy

∣∣∣∣
x=xk

, y = g(xk)

Two-variable transformation fU,V (u, v) = fX,Y

(
x(u, v), y(u, v)

) ∣∣∣∣d(x, y)
d(u, v)

∣∣∣∣
Jacobian determinant d(x, y)

d(u, v) = det


∂x

∂u

∂x

∂v

∂y

∂u

∂y

∂v


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2 Moment Generating Functions & Characteristic Functions

Transformations describe how distributions change under mappings of random variables. Generating func-
tions provide a complementary perspective; instead of reshaping probability densities directly, they encode
an entire distribution into a single analytic object. Operations on random variables then correspond to
simple algebraic operations on these functions. This shift from densities to functions is especially powerful
for studying moments, sums of independent variables, and distributional limits.

Moment Generating Function (MGF). The moment generating function of a random variable X is
defined as

MX(s) = E
[
esX

]
,

whenever the expectation exists in an open neighborhood of s = 0. If it exists, the MGF uniquely
determines the distribution of X.
The defining feature of the MGF is that its derivatives at the origin recover the raw moments of the
distribution:

E[Xk] = M
(k)
X (0) = dkMX(s)

dsk

∣∣∣∣∣
s=0

.

Thus, the entire sequence of moments is encoded in the local behavior of MX(s) near zero.

Remark: Raw vs. Central Moments. The moments generated by MX(s) are raw moments E[Xk],
not central moments. Central moments measure deviations from the mean,

E
[
(X − E[X])k

]
,

and must be obtained by algebraic manipulation of raw moments. Only when E[X] = 0 do raw and central
moments coincide.

Characteristic Function (CF). The characteristic function of X is defined as

ϕX(ω) = E
[
eiωX

]
, ω ∈ R.

Unlike the MGF, the characteristic function always exists for every random variable, regardless of tail
behavior. It plays an analogous role to the MGF but operates in the complex domain and is closely related
to the Fourier transform of the distribution.

Relationship Between MGFs and CFs. When both exist, the MGF and CF are analytically connected.
Moments can be recovered from either representation:

E[Xk] = dk

dsk
MX(s)

∣∣∣∣∣
s=0

= 1
ik

dk

dωk
ϕX(ω)

∣∣∣∣∣
ω=0

.

In practice, MGFs are convenient when they exist, while CFs provide a universally valid alternative.

Key Structural Properties. Generating functions turn operations on random variables into algebraic
rules:

1. Additivity for independent sums. If X and Y are independent,

MX+Y (s) = MX(s) MY (s), ϕX+Y (ω) = ϕX(ω) ϕY (ω).

2. Sums of i.i.d. variables. For Sn = ∑n
k=1 Xk with Xk i.i.d.,

MSn(s) = [MX(s)]n.
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3. Sample mean. For X̄n = 1
n

∑n
k=1 Xk,

MX̄n
(s) = [MX(s/n)]n.

4. Linear transformations. If Y = aX + b,

MY (s) = esb MX(as), ϕY (ω) = eiωb ϕX(aω).

Uses of Generating Functions.

• Compact derivation of moments

• Efficient analysis of sums of independent variables

• Distributional identification via uniqueness

• Proofs of limit theorems through functional convergence

Lévy’s Continuity Theorem. If the characteristic functions of a sequence {Xn} converge pointwise to
the characteristic function of X,

ϕXn(ω) → ϕX(ω),

and ϕX is continuous at the origin, then
Xn

d−→ X.

An analogous statement holds for MGFs when they exist in a neighborhood of zero.

Convergence of generating functions implies convergence in distribution. This principle underlies many
classical limit results, including the Central Limit Theorem, and explains why generating functions serve
as a bridge between finite-sample distributions and asymptotic behavior.

Formula Summary Table

Object / Operation Formula

Moment generating function MX(s) = E
[
esX

]
Raw moments from MGF E[Xk] = dkMX(s)

dsk

∣∣∣∣∣
s=0

Characteristic function ϕX(ω) = E
[
eiωX

]
Moments from CF E[Xk] = 1

ik

dkϕX(ω)
dωk

∣∣∣∣∣
ω=0

Lévy continuity (MGF / CF) MXn(s)→MX(s) or ϕXn(ω)→ϕX(ω) ⇒ Xn
d−→ X

Independent sum MX+Y (s) = MX(s) MY (s)

Sum of i.i.d. variables MSn(s) = [MX(s)]n

Sample mean MX̄n
(s) = [MX(s/n)]n

Linear transformation MaX+b(s) = esb MX(as)
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Moment Generating Functions (MGFs)

Distribution MX(s)

Bernoulli (p) 1 − p + pes

Binomial (n, p) (1 − p + pes)n

Geometric (p) pes

1 − (1 − p)es
, s < − ln(1 − p)

Poisson (λ) exp[λ(es − 1)]

Negative Binomial (r, p)
(

p

1 − (1 − p)es

)r

, s < − ln(1 − p)

Discrete Uniform {1, . . . , n} es(1 − ens)
n(1 − es)

Exponential (θ) 1
1 − θs

, s <
1
θ

Gamma (α, θ) (1 − θs)−α, s <
1
θ

Chi-square (r) (1 − 2s)−r/2, s <
1
2

Normal (µ, σ2) exp
(
µs + 1

2σ2s2
)

Uniform (a, b) esb − esa

s(b − a)

Beta (α, β) 1F1(α; α + β; s) (via confluent hypergeometric function)

Cauchy (m, d) does not exist (diverges for all s ̸= 0)
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