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Abstract

This study examines how predictive confidence and market regimes interact to shape the
economic usefulness of short-horizon equity return forecasts. Using daily data for the S&P
500 ETF (SPY), a probabilistic classification model is trained to predict the direction of next-
day returns based on recent returns and realized volatility. Market regimes are identified en-
dogenously using an unsupervised Gaussian Mixture Model, allowing predictive behavior and
strategy performance to be evaluated conditionally across statistically distinct market states.
While short-horizon directional prediction remains challenging and predicted probabilities are
concentrated near the classification threshold, the model’s outputs exhibit meaningful variation
across regimes. Translating predictions into a simple directional trading strategy shows that
selectively deploying model signals and disabling execution in structurally adverse regimes can
improve risk-adjusted performance and reduce drawdowns relative to unconditional deployment.
The results highlight the importance of separating prediction from deployment and suggest that
regime-aware execution rules may play a more important role than increased model complexity

in applied financial machine learning settings.



1. Introduction and Problem Formulation

Predictive modeling in financial markets is complicated by the inherent nonstationarity of asset re-
turn dynamics and the weak signal-to-noise ratio present at short horizons. While machine learning
models are often evaluated using statistical classification metrics such as accuracy or area under
the ROC curve, such measures do not necessarily translate into economic value when deployed in
trading or risk-management settings. In particular, predictive confidence and classification perfor-
mance may vary substantially across market environments, leading to strategies that perform well
on average but fail during specific market conditions. Understanding when a model is reliable, and
when it should be withheld from deployment, is therefore as important as improving raw predictive
accuracy.

This project investigates the relationship between model confidence, market regimes, and eco-
nomic performance in the context of short-horizon equity return prediction. Using daily data for
the S&P 500 ETF (SPY), a simple and interpretable classification model is trained to predict the
direction of next-day returns based on recent returns and realized volatility. Rather than focusing
on maximizing predictive accuracy through model complexity, the analysis emphasizes the condi-
tional behavior of model performance across statistically identified market regimes. Market regimes
are inferred directly from the data using an unsupervised learning approach, allowing the struc-
ture of market states to emerge endogenously rather than being imposed ex ante through heuristic
thresholds.

The central objective of this study is twofold. First, it seeks to assess whether predictive confi-
dence meaningfully correlates with out-of-sample accuracy, both globally and within distinct market
regimes. Second, it evaluates whether conditioning model deployment on regime membership can
improve economic outcomes, as measured by risk-adjusted performance metrics such as the Sharpe
ratio and maximum drawdown. By separating the tasks of prediction and deployment, the analysis
aims to demonstrate that modest predictive models may still yield economically relevant outcomes
when combined with appropriate regime-aware execution rules.

This framework reflects a practical perspective on financial machine learning: predictive models
are treated as inputs into a broader decision-making system rather than as standalone solutions.
The results highlight the importance of regime awareness in translating statistical predictions into
robust trading strategies and suggest that avoiding structurally adverse environments may be more

effective than attempting to extract marginal gains through increased model complexity.



2. Data and Feature Construction

2.1. Data Source and Sample Construction

The empirical analysis uses daily close-to-close data for the S&P 500 Exchange-Traded Fund (SPY),
obtained from Yahoo Finance and adjusted for corporate actions. The sample spans February 2006
through December 2025, the earliest period for which all features are available, and consists of
5,007 daily observations after accounting for rolling-window construction and target alignment. To
avoid look-ahead bias, the dataset is split chronologically, with the first 70% of observations used
for model estimation and regime identification and the remaining 30% reserved for out-of-sample
evaluation. Approximately 55% of observations correspond to positive next-day returns, reflecting
the long-run upward drift in equity prices. Table 1 summarizes the dataset characteristics and

sample split.

Table 1: Dataset summary and sample split

Start date End date N obs Train obs Test obs Class balance (y = 1)
2006-02-01  2025-12-24 5007 3504 1503 0.5516

Figure 1 plots the 20-day realized volatility series used in feature construction. The time series
exhibits pronounced clustering and sharp volatility spikes during well-known market stress episodes,

providing motivation for the regime-based analysis pursued in subsequent sections.
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Figure 1: SPY 20-day realized volatility (vol20)

2.2. Return Definitions and Target Variable

Let P, denote the corporate-action adjusted closing price of SPY on trading day ¢. Daily simple
returns are computed using close-to-close prices as
b

Tty = - 17
P




corresponding to the implementation retl = close.pct_change() in the dataset construction
pipeline. The one-step-ahead return is denoted by r;y1. In the implementation, this corresponds

to the forward-shifted return series

__(data)
Tt41 = T4

implemented as retl next = retl.shift(-1). The binary classification target is then defined as

the sign of the next-day return:

ye = I{rgq >0},

where I{-} denotes the indicator function. This produces a standard one-day-ahead directional
forecasting problem in which all input features are constructed using information available at time
t, while the label depends only on realized returns over the subsequent period (t,t + 1].

Figure 2 shows the empirical distribution of next-day returns. The distribution is sharply
concentrated near zero with occasional extreme outcomes, illustrating the low signal-to-noise nature
of short-horizon return prediction and motivating the use of regime conditioning in subsequent

analysis.
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Figure 2: Distribution of next-day returns (retl_next).

2.3. Feature Construction

The feature set is deliberately restricted to a small number of low-dimensional and economically
interpretable variables derived from recent returns and realized volatility, emphasizing transparency
and stability over model complexity. Model inputs include lagged and aggregated return measures as
well as rolling estimates of realized volatility: the one-day lagged return (ret1_lagl) captures short-
term momentum or reversal effects, the five-day return (ret5) provides a slightly longer-horizon

measure of recent price movement, and realized volatility is computed as the rolling standard



deviation of daily returns over 10-day and 20-day windows (vol10 and vol20). All features are
constructed using information available at time ¢, avoiding look-ahead bias, and are standardized
to have zero mean and unit variance prior to model estimation to ensure numerical stability and
comparability across inputs. Table 2 reports descriptive statistics for the return and volatility
variables, illustrating the heavy-tailed nature of returns and the substantial variation in realized

volatility that motivates the regime-based analysis in subsequent sections.

Table 2: Descriptive statistics for returns and feature variables

mean std min 25% 50% 5% max
retl 0.000486 0.012234 -0.109424 -0.003958 0.000704 0.005915 0.145198
retl_next 0.000485 0.012234 -0.109424 -0.003958 0.000699 0.005915 0.145198
retb 0.002352 0.024514 -0.197934 -0.008104 0.004210 0.015042 0.194036
vol10 0.009844 0.007564  0.001265 0.005390 0.008010 0.011682 0.071055
vol20 0.010056 0.007138  0.002010  0.005873 0.008333 0.011834 0.060423

3. Methodology

3.1. Regime Identification

Market regimes are identified using an unsupervised Gaussian Mixture Model (GMM) estimated
on standardized features summarizing recent returns and realized volatility, specifically the five-day
return (ret5) and rolling 10-day and 20-day volatility measures (vol10, vo120). To avoid look-
ahead bias, the GMM is fit using only the first 70% of observations in chronological order and then
applied to the full sample to assign regime labels. The model yields four statistically distinct and
economically intuitive regimes, including a high-volatility, negative-return state associated with
turbulent market conditions, a low-volatility regime reflecting more stable environments, and two
intermediate regimes capturing varying combinations of return momentum and volatility. Regime
occurrences are uneven but persistent, consistent with volatility clustering in equity markets, as

illustrated by the inferred regime timeline in Figure 3.
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Figure 3: Inferred market regimes over time from a Gaussian Mixture Model fit on standardized
retb, vol10, and vol20 features using the training subsample.



3.2. Predictive Model and Confidence Score

Directional predictions are generated using a logistic regression classifier trained to predict the
next-day return sign. The input vector at time ¢ consists of two standardized features, the five-day
return and 20-day realized volatility, i.e., X; = (ret5;,vol20;), and the target is y, = I{r1 > 0}.
Model estimation follows a time-ordered split: the classifier is fit on the first 70% of observations
and evaluated on the remaining 30% to avoid look-ahead bias. The model outputs an out-of-sample
probability score p; = P(y; = 1 | X;) for test observations, with the corresponding class prediction
9+ = I{p+ > 0.5}. A scalar confidence measure is defined as conf; = |p; — 0.5, which increases as
predicted probabilities move away from the decision threshold and is used to stratify performance

and to construct confidence-filtered trading rules in subsequent analysis.

4. Evaluation Framework

4.1. Out-of-Sample Evaluation Design

All empirical evaluation is conducted strictly out of sample using a chronological test window
comprising the final 30% of observations. Model estimation, feature standardization, and regime
identification are performed exclusively on the training subsample to prevent information leakage.
Predicted class probabilities, confidence scores, and regime labels are then fixed prior to evaluation
and treated as exogenous inputs in the test period. This design ensures that all reported pre-
dictive and financial performance metrics reflect deployable, forward-looking behavior rather than

in-sample fit.

4.2. Prediction-Level Performance

Prediction accuracy is evaluated as a function of model confidence and market regime using out-
of-sample observations only. Confidence is defined as the absolute deviation of the predicted prob-
ability from the classification threshold, conf; = |p; — 0.5|, and test observations are grouped into
deciles based on this measure. Within each confidence bin, accuracy is computed as the fraction of
correct directional predictions, both unconditionally and conditional on the inferred market regime.
This stratification allows assessment of whether higher-confidence predictions are empirically more
reliable and whether this relationship varies across regimes. The results indicate substantial hetero-
geneity: certain regimes exhibit a strong monotonic relationship between confidence and accuracy,
while others show weaker or unstable behavior, motivating the use of regime-aware decision rules

in the strategy construction that follows.

4.3. Strategy Construction

Predicted class probabilities are translated into a simple directional trading strategy to assess the
economic relevance of the model’s outputs. At each out-of-sample observation, a baseline position

is formed by taking a long position when the predicted probability of a positive return exceeds the



classification threshold and a short position otherwise. To reduce the influence of low-conviction
predictions and mitigate noise, positions are filtered using a fixed confidence threshold. Specifically,
trades are executed only when the model’s confidence, defined as |p;—0.5|, exceeds 0.02; observations
that do not meet this criterion are assigned a zero position.

In addition to confidence filtering, strategy deployment is conditioned on inferred market
regimes. Based on the regime characteristics summarized in Table 3, the regime exhibiting the
highest average realized volatility and the most adverse short-horizon return behavior (Regime 3)
is treated as a high-risk state. The strategy is therefore deactivated during periods classified as
this regime by setting positions to zero, regardless of the model’s predicted direction. The designa-
tion of Regime 3 as a high-risk state is based on its elevated realized volatility and adverse return
characteristics, which are documented and discussed in Section 5.1.

Both the confidence threshold and the regime-based deactivation rule are fixed prior to out-of-
sample evaluation and applied uniformly throughout the test period. Strategy returns are computed
by multiplying the resulting position by the realized next-day return, producing a fully out-of-

sample return series used for subsequent performance analysis.

4.4. Financial Performance Metrics

Strategy performance is evaluated using standard risk-adjusted and drawdown-based measures
computed from the out-of-sample return series. Risk-adjusted performance is summarized by the
annualized Sharpe ratio, calculated using daily strategy returns and a constant risk-free rate. Down-
side risk is assessed via maximum drawdown, defined as the largest peak-to-trough decline in the
cumulative equity curve over the evaluation period. In addition, trade frequency is reported as
the fraction of test-period observations with nonzero positions, providing a measure of strategy
activity and capital deployment. Performance metrics are computed both for the overall strategy
and conditionally by market regime, allowing direct assessment of regime-specific contribution and

validating the regime-based activation and deactivation rules.



5. Empirical Results and Strategy Performance

5.1. Regime Characteristics and Predictive Reliability

The four regimes inferred by the GMM exhibit economically distinct patterns in both recent returns
and realized volatility. In particular, Regime 2 represents a low-volatility environment (lowest
v0110 and vo120) with relatively stable return behavior, while Regime 3 corresponds to a rare but
extreme high-volatility state (substantially elevated vol10 and vol20) accompanied by negative
average short-horizon returns and markedly higher dispersion. Regimes 0 and 1 occupy intermediate
volatility levels but differ in return dynamics, with Regime 1 associated with positive average ret5b
and Regime 0 associated with negative average ret5. Table 3 summarizes regime frequencies and
feature moments, providing the empirical basis for regime-conditional evaluation and the subsequent

regime-based strategy controls.

Table 3: Regime frequencies and feature moments (GMM regimes)

reth vol10 vol20
count mean std count mean std count mean std

1440 -0.006406 0.022228 1440 0.010079 0.002380 1440 0.009199 0.001837
1326 0.012546 0.021178 1326 0.011785 0.004943 1326 0.013043 0.003381
1926 0.004471 0.009636 1926 0.005091 0.001376 1926 0.005366 0.001167
315 -0.013477 0.061518 315 0.029656 0.014933 315 0.030073 0.012740

W N = O

5.2. Confidence-Stratified Accuracy Across Regimes

Out-of-sample predictive accuracy is evaluated by stratifying test observations into confidence
deciles, where confidence is defined as conf; = |p; — 0.5|, and computing directional accuracy
within each bin conditional on the inferred market regime. This analysis is intended to provide a
diagnostic view of how model reliability varies jointly with predictive confidence and market state,
rather than to establish a precise functional relationship.

Figure 4 illustrates that the relationship between confidence and realized accuracy differs across
regimes. In lower-volatility regimes, accuracy remains relatively stable across confidence bins and
is generally higher in bins associated with larger deviations from the classification threshold. In
contrast, accuracy patterns in the high-volatility regime are more irregular across bins, reflecting
both reduced predictive stability and the limited number of observations available in certain con-
fidence-regime combinations. As a result, individual bin-level fluctuations should be interpreted
cautiously, with emphasis placed on broader regime-level differences rather than fine-grained mono-
tonic trends.

Figure 5 provides a complementary geometric perspective by overlaying inferred regime labels
on the global logistic probability field in (ret5,vol20) space. The visualization highlights that

regimes occupy distinct regions of the feature space, implying that a single global decision rule



Accuracy vs Confidence by Regime (Out-of-Sample)
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Figure 4: Out-of-sample accuracy versus confidence decile, computed separately within each in-
ferred regime. Confidence is defined as |p — 0.5].

operates under materially different state distributions. This structural heterogeneity motivates
the regime-aware evaluation and deployment rules examined in subsequent sections. Additional
calibration diagnostics reported in Appendix A indicate that predicted probabilities are tightly
concentrated near the unconditional mean, motivating the use of confidence thresholds rather than

probability ranking.
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Figure 5: Global logistic probability field in (ret5,vol20) space with inferred GMM regime labels
overlaid, illustrating regime separation and state-dependent operating conditions.



5.3. Strategy-Level Performance

The economic implications of regime- and confidence-aware prediction are evaluated using an out-of-
sample trading strategy constructed from the model’s predicted probabilities. Strategy performance
is summarized using standard risk-adjusted and drawdown-based metrics computed over the test
period. The resulting strategy exhibits a positive annualized Sharpe ratio, moderate maximum
drawdown, and high trade participation, indicating that selective deployment of model signals can
materially influence realized risk-adjusted performance.

Performance varies substantially across market regimes. Regimes associated with low and mod-
erate realized volatility contribute positively to overall strategy returns, while the highest-volatility
regime delivers poor or unstable performance. This heterogeneity motivates the conditional de-
activation of the strategy during periods classified as the high-risk regime, as discussed in Sec-
tion 4.3. Figure 6 reports the cumulative out-of-sample equity curve, illustrating that regime- and
confidence-based filtering primarily affects the volatility and drawdown profile of returns rather
than generating uniform gains across all market conditions. Transaction costs, slippage, and short-
ing or financing constraints are not modeled; reported performance should therefore be interpreted

as gross of trading frictions.
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Figure 6: Out-of-sample equity curve of the confidence- and regime-filtered trading strategy.
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6. Conclusion

This study examines the interaction between predictive confidence and market regimes in a simple,
interpretable classification setting using financial time series data. By combining a global logis-
tic regression model with unsupervised regime identification based on recent returns and realized
volatility, the analysis demonstrates that predictive reliability is highly state dependent and that
confidence alone is insufficient without regime context. Empirical results show that confidence-
filtered predictions deliver differentiated risk-adjusted outcomes in low and moderate volatility
regimes, while predictive signals deteriorate in extreme volatility environments, motivating regime-
based strategy controls. Taken together, these findings highlight the importance of incorporating
market state information into the evaluation and deployment of predictive models, even when using
otherwise static classifiers. Future work may extend this framework to richer feature sets, nonlin-
ear models, alternative regime definitions, and the explicit incorporation of transaction costs and

execution constraints.
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A. Appendix

A.1. Confidence Distribution Diagnostics

This appendix reports summary statistics for the model confidence measure used throughout the
analysis. Confidence is defined as the absolute deviation of the predicted probability from the
classification threshold, conf; = |p;—0.5|. The distribution exhibits meaningful dispersion and is not
concentrated near zero, supporting its use for stratifying predictions and constructing confidence-

filtered strategies.

Table 4: Summary statistics for model confidence (out-of-sample)

count mean std min 25% 50% 5% max
1503 0.0498 0.0121 0.0008 0.0443 0.0511 0.0571 0.1008

A.2. Probability Calibration Diagnostics

To assess the calibration and dispersion of predicted probabilities, we examine both the distribution
of out-of-sample predicted probabilities and the associated Brier score. Figure 7 plots the histogram
of predicted probabilities in the test period. The distribution is tightly concentrated around the
unconditional mean return probability, with few extreme probability values, indicating substantial
probability compression. This behavior is consistent with the low signal-to-noise nature of short-
horizon equity return prediction.

As a complementary summary measure, the Brier score is computed as the mean squared error

between predicted probabilities and realized outcomes,

n

Brier = l — ).
n ;(Pt Yt)
The resulting out-of-sample Brier score is 0.247, which is close to the value obtained by an unin-
formative baseline forecast and reflects the limited discriminative power of the model at the daily
horizon. These diagnostics reinforce the interpretation that model probabilities are best viewed
as low-amplitude signals suitable for confidence-based filtering rather than as precise probabilistic

forecasts.

A.3. Regime-Level Strategy Performance

To further assess regime dependence in economic performance, this appendix reports risk-adjusted
returns computed separately within each inferred regime. Results confirm that strategy profitability
is concentrated in low- and moderate-volatility regimes, while the highest-volatility regime fails to

deliver stable risk-adjusted performance, motivating its exclusion in the regime-aware strategy.
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Figure 7: Distribution of out-of-sample predicted probabilities. Predicted probabilities are tightly
concentrated near the unconditional mean, indicating probability compression.

Table 5: Out-of-sample Sharpe ratios by regime

Regime Sharpe ratio

0 1.38
1 0.41
2 0.22
3 NaN

A.4. Prediction Error Anatomy

For completeness, this appendix reports accuracy and error rates stratified jointly by confidence
decile and regime. These diagnostics provide a granular view of where prediction errors concentrate
across market states and confidence levels and underpin the regime-conditional patterns discussed
in the main text. Due to size considerations, the full table is included here rather than in the main
body.

Table 6: Prediction error anatomy by regime and confidence bin (out-of-sample)

Regime Confidence bin [p; — 0.5] Accuracy Error rate n
0 (0.000, 0.0349] 1.000 0.000 2
0 (0.0349, 0.0422] 0.676 0.324 37
0 (0.0422, 0.0460] 0.559 0.441 59
0 (0.0460, 0.0489] 0.431 0.569 51
0 (0.0489, 0.0511] 0.633 0.367 30
0 (0.0511, 0.0533] 0.600 0.400 40
0 (0.0533, 0.0556] 0.763 0.237 38
0 (0.0556, 0.0585] 0.467 0.533 45
0 (0.0585, 0.0628] 0.573 0.427 82

Continued on next page
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Regime Confidence bin |p; — 0.5 Accuracy Error rate n

0 (0.0628, 0.1010] 0.548 0452 115
1 (0.000, 0.0349] 0.505 0.495 109
1 (0.0349, 0.0422] 0.551 0.449 98
1 (0.0422, 0.0460] 0.542 0.458 72
1 (0.0460, 0.0489] 0.560 0.440 50
1 (0.0489, 0.0511] 0.457 0.543 35
1 (0.0511, 0.0533] 0.562 0.438 32
1 (0.0533, 0.0556] 0.391 0.609 23
1 (0.0556, 0.0585] 0.375 0.625 16
1 (0.0585, 0.0628] 0.643 0.357 14
1 (0.0628, 0.1010] 1.000 0.000 3
2 (0.0422, 0.0460] 0.562 0.438 16
2 (0.0460, 0.0489)] 0.489 0.511 A7
2 (0.0489, 0.0511] 0.553 0.447 85
2 (0.0511, 0.0533] 0.610 0.390 77
2 (0.0533, 0.0556] 0.616 0.384 86
2 (0.0556, 0.0585] 0.529 0.471 85
2 (0.0585, 0.0628] 0.532 0.468 A7
2 (0.0628, 0.1010] 0.625 0.375 8
3 (0.000, 0.0349] 0.500 0.500 40
3 (0.0349, 0.0422] 0.533 0.467 15
3 (0.0422, 0.0460] 1.000 0.000 3
3 (0.0460, 0.0489)] 0.000 1.000 2
3 (0.0489, 0.0511] 0.000 1.000 1
3 (0.0511, 0.0533] 1.000 0.000 1
3 (0.0533, 0.0556] 0.667 0.333 3
3 (0.0556, 0.0585] 0.500 0.500 4
3 (0.0585, 0.0628] 0.571 0.429 7
3 (0.0628, 0.1010] 0.560 0.440 25

Notes: Accuracy is computed as the fraction of correct directional predictions within each confidence bin, con-
ditional on the inferred regime. Some regime—bin combinations contain small sample sizes (e.g., n < 5), so extreme

accuracies in those bins should be interpreted cautiously.
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